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Abstract

The utility of analytical chemistry measurements in most applications is dependent on an assessment of measurement error. This paper
demonstrates the use of a two-component error model in setting limits of detection and related concepts and introduces two goodness-of-fit
statistics for assessing the appropriateness of the model for the data at hand. The model is applicable to analytical methods in which high concen-
trations are measured with approximately constant relative standard deviation. At low levels, the relative standard deviation cannot stay constan
since this implies vanishingly small absolute standard deviation. The two-component model has approximately constant standard deviation near
zero concentration, and approximately constant relative standard deviation at high concentrations, a pattern that is frequently observed in prac-
tice. Here we discuss several important applications of the model to environmental monitoring and also introduce two goodness-of-fit statistics,
to ascertain whether the data exhibit the error structure assumed by the model, as well as to look for problems with experimental design.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction amodel assuming a constant error is used, there is an implicit
assumption that the absolute size of the error is unrelated
Limitations of the analytical methodology used to mea- to the concentration of the analyte. This assumption is not
sure the concentration of toxic substances in the environ- supported by empirical observation of behavior at the higher
ment have had an important policy role in regulation. It is levels. If a model assuming a proportional error is used, then
difficult to regulate emissions of toxic substances at levels there is an implicit assumption that the measurement error
below what can be reliably measured, and a definition of becomes vanishingly small as the concentration approaches
the level of reliable measurement is therefore crucial to pol- zero. This assumption is also contrary to experience of be-
icy making. In this paper, we discuss the implications of a havior at the lower levels. Since environmental monitoring
model for measurement error for these policy issues. data often fall into this gray area, understanding measure-
It has been observed from long experience that the mea-ment error in this region is of considerable importance.
surement error of an analytical method, for example atomic  The model presented here was first proposed by Rocke
absorption spectroscopy, is of two types. Over a range of and Lorenzat¢3], where some of the technical background
concentrations near zero, the measurement error is seen tto this model can be found. The model resolves the difficul-
be constant. Over ranges of higher concentration, the mea-ies discussed above by incorporating both types of error that
surement error is observed to be proportional to the con- are observed in practice into a single model. This model pro-
centration of the analytd,2]. This poses some difficulty in  vides an obvious advantage over existing models by describ-
estimating the overall precision of an analytical method for ing the precision of measurements across the entire usable
data that span the “gray area” where a transition occurs be-range. We will present two examples in detail—one of Ni
tween near zero concentrations and quantifiable amounts. Ifby ICP/MS and one of proprionitrile by GC/MS—numerical
illustrations using Zn and Ag by ICP/MS, and summary re-
sults for a larger group of organics by GC/MS and met-
* Corresponding author. als by ICP/MS. These examples support the validity and
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advantages of this two-component model. We also discussknown, these quantities can be estimated by simply substi-
the application of the model to detection limits, quantifica- tuting the estimates from the algorithms. This step is justi-
tion limits, sample size calculations, and the construction fied in application, since, as the bootstrap results show, the
of confidence intervals. We introduce two goodness-of-fit variance of the parameter estimates for maximum likelihood
statistics and estimate their distributions using the paramet-estimation (MLE) is quite sma[B3].

ric bootstrap. Some related work with a different point of  Two derived quantities will be useful in interpretation of
view on some of the policy issues can be found4n6]. the resultsS. = o/ represents the standard deviation of

o et b Tl et 1l s ol sl at kvt 5, = (&€ 1) s the RSD ot
P y y for high levels. For values of, appropriate for analytical

mtistrnumenthonly.trl]t d?netsrnlotbd?a: vr\/ltleortih(tair iour:crens ? vra;rl; technologies (say not more than 0.8),is very neaw,. For
ation, such as ‘e inter-iaboratory variafion, numan-error, example, ifo, = 0.1, thenS,, = 0.1008 and ifo;, = 0.3,

or error in identification of peak area in gas chromatogra-
oy : . _thenS, =0.32.
phy/mass spectroscopy. ldentifying a signal as a peak is a

non-trivial task and the inherent variation produced by this anLcJZIZ? tggse derived quantities, we can represent the vari-
difficulty is beyond the scope of this paper. For further read- Y
ings in this area, sef]. Var{y} = u?p°S3 + o? (4)

and for the estimated concentration,
2. The model Var(ii} = p®S7 + S? (5)

Most measurement technologies require a calibration The usefulness of the two-component error model is clear

curve, often linear, to estimate the actual concentration of anWhen compared to using only the relative standard deviation,
ana|yte ina samp]e fora given response. We can incorporatéNhiCh is defined to be equal to the standard deviation of the
into the linear calibration model the two types of errors that €stimated concentration divided by the concentrafign

are observed in most analyses. The two-component model ig=0r the two-component model, we have

y=a+pBue’+e (1) R 52

RSD(A) = [ S7+ =5 (6)
wherey is the response (such as peak area) at concentration ®
n, « andp are the parameters of the calibration cunyey If the error structure is described only in terms of RSD,

N(0, 0y) ande ~ N(0, o). Here,n represents the propor- e see that measurements at high concentrations have a
tional error that always exists, but dominates at concentra- nearly constant RSD, whereas small concentrations have an
tions significantly above zero, ardrepresents the additive  jncreasing RSD that tends to infinity as the concentration
error that always exists but dominates mainly for near zero gpproaches zero, which is not observed in practice. Use of
concentrations. This two-component model approximates aRsp alone to characterize measurement error in the low
constant standard deviation for very low concentrations and concentration region can cause difficulties when attempting
approximates a constant relative standard deviation (RSD)to make decisions regarding detection and quantification.
for higher concentrations. Note thais the response of the  The two-component model allows for a more reasonable

measuring apparatus, for example peak area. In order to 0bestimation of error near zero, and hence more reasonable
tain the estimated concentration, we perform the back cal- ¢riteria for setting detection limits and critical levels.

culation Likewise, using the simple model, i.e. assuming that the
. Yy 5 standard error remains constant across all concentrations,
= A (2) results in grossly inaccurate estimates of error at higher con-

centrations. For example, assume that the standard deviation
where& and 8 are estimates af and g, respectively, in the  of blanks is 29 g/l, but that,, = 0.3, a very high coeffi-

model(1). cient of variation that nevertheless often occurs with some
Under this model, the variance of the responsa con- technologies, and thgt = 1. Suppose we have an esti-
centrationu whena and g are known is given by mated concentration of 600 g/l and would like to calculate
> 2 confidence intervals around that estimate. Using the simple
Var{y} = u?g2 e’ (6”1 — 1) 4 o2 (3) - iati
{y} =npen( +oe model, we would estimate the standard deviation to be that

This calculation relies on the assumption thaaind 8 are of the blanks, or 29g/l. However, sineg = 0.3, the true

known, which is perhaps an unusual circumstance. It is safestandard deviation i§ 29 + 600PS2 = 182 ¢/l, an increase

to consider these parameters known when the estimates aref the variance of over six times the variance at zero. Poor
based on large amounts of available historical data where

there is little variation in the observed calibration line over 1 pere we assume that and 8 are well enough estimated that they
time. When the regression and variance parameters are unean be treated as known.
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estimation of error at a given concentration will heavily af- ability of a measurement exceeding this value will be very
fect the estimation of limits of detection, and hence regula- small, say 0.01, when the true concentration in the sample
tory practices. is zero[10]. That is, samples that do not contain the analyte
are very unlikely to generate measurement results that ex-
ceedLc. Note that the critical level is defined at first in the
3. Estimation units of the measurement technology (e.g., peak area) not in
units of concentration. Of course, we can also express the
The parameters in the two-component model can be es-critical level in units of concentration by taking the criti-
timated in a number of ways. The standard deviatiprof cal level (in measured units) and dividing by the calibration
the low level measurements can be estimated from repli- slopeg. Since the critical level is the point at which the de-
cate blanks, for example by those routinely included with tection decision is made, it has been called by some authors
batches of samples. If this number is stable, it can also bea detection limit, but it should be noted that it is distinct
estimated from routine QC data so long as measurements afrom the IUPAC definition of the limit of detection. Limits
zero concentration are replicated. The paramejeran be of detection will be discussed later in this paper.
likewise estimated from the standard deviation of the loga- Under the assumption of normality, the valuelgf may
rithm of high level measurements. The calibration curve can be calculated as follows: assume thatthe standard devia-
then be estimated using weighted least squares, weightingtion of the response at = 0, is known and that we require
each point by the inverse estimated variance (ugngvith 99% confidence in our statement that the analyte is present.
estimates of the parameters inserted). It is also possible toThen the one-sided 99% confidence level is represented by
estimate all four parameters simultaneously using weighted Lc = « + zoo., Wherezg is the z-value corresponding to
least squares, although our experience is that this estima-the 99th percentile of the standard normal distribution (i.e.,
tion method is often not very stable and can lead to non- zg = 2.326). To find the critical level for any level of con-
convergence or impossible estimates (such as negativefidence, simply find the appropriate one-sidedalue, then
variances). multiply by the standard deviation of the blanks and add this
The most effective estimation method is maximum like- to the mean value of the blanks, i.e.,
lihood estimation, as described[i8]. A computer program
that solves for the maximum likelihood estimatesdog, o,
oy is available ahttp://www.cipic.ucdavis.eda/dmrocke in units of the response of
Two example data sets and the results from the maximum Le = 205, ®)
likelihood algorithm will be shown here, as well as summary
results for several other data sets. in units of concentration. Generally, the mean and standard
deviation of the blanks will be well enough known from
experience to use this method. If these are estimated from
4. Limits of detection data, then a-value (from ther-distribution), with the ap-
propriate degrees of freedom, is substituted forzvalue.
In this section we describe some applications of the The advantage of the two-component error model is that
two-component model. Special emphasis is given to detec-an estimate fow,. with desirable statistical properties can

Lc = o+ 700« (7)

tion and measurement of toxins at very low levels. be obtained from data that span a range of concentrations,
resulting in greater accuracy from a given amount of data.
4.1. Critical levels Specifically, the two-component model accounts for the in-

herent error structure of the entire data set. Once we have

Detection refers to the capability of an analytical mea- achieved adequate goodness-of-fit by considering the error
surement process to indicate the presence of an analyte. Thistructure as a whole, the parameter estimates provide us with
requires an agreed upon procedure for determining whethermore accurate estimates of error at the concentrations we are
or not a given measurement result conclusively establishesinterested in, here, concentrations near the limit of detection.
that the analyte is present in the samj8le In practice, this For our example zinc data, we hawe= 204 in units of
means that the investigators establish a numerical value suclpeak area and. = 289g/l. If we use a 99% confidence
that a result greater than this value is extremely unlikely to level, the normal percentage point is 2.326, so thatin
occur if the true concentration is in fact zero, while a result units of peak area is 499 (2.326)(204) = 965 and in units
lower than this value indicates that the true concentration in of concentration i$2.326)(28.9) = 67.2 g/l.
the sample is either zero, or is too low to detect (with cer-  Note that a measured value beldw does not establish
tainty) with the technology in use. The measurement error that the analyte is absent, only that it has not been shown
that exists in any technology leads to this inability to de- conclusively to be present. This means that the value should
tect concentrations below a certain level. The critical level be reported as measured, together with the standard devia-
is defined by the International Union of Pure and Applied tion at the measurement value. Cases in which limitations
Chemistry (IUPAC) to be the valud,c, such that the prob-  of the instrument itself prevent reporting a value (e.g. as
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is the case with some spectroscopic measurements) are anlosed form solution is possible. The required condition is
obvious exception. In other cases, censoring of values be-

low Lc may be required as a matter of policy by regulatory S, < —. (12)
agencies. Such practices result in data sets with reduced util- 1

ity from the loss of information, which makes tracking of For details and proof, seAppendix A Note that if this
trends, monitoring of laboratory quality, summarization of condition is not satisfied, then there is no solution at all. The
data, and other data analysis all more difficult. More impor- closed form solution derived then is

tantly, this censoring needlessly prevents investigators from S 2 ez 2 2

being able to reach probabilistically quantified conclusions Ve [ZO Ty~ A—218)g - Zl)J
about the true presence of an analyte. Sometimes more or D= 1— 2555

less sophisticated methods can be used to cope with these

censored dat§11-13] but simple reporting of measured Whenzo = z1 = z, we have the particularly simple form

(13)

values would allow use of basic, easily understood method- 2zS

ology instead of these complex techniques. Lp = 1- 252 (14)
N

4.2. Minimum detectable value Then an estimated.p is found by simply substituting the

sample variance estimates into the above equation.

The limit of detection or minimum detectable value isthe ~ For our example zinc data, we hase= 289 ands, =
true concentratior, p, of an analyte that will, with high con- ~ 0.0390. If we usezg = z1 = 2.326, corresponding to 99%
fidence, produce a measured value above the critical level.confidence, we have a minimum detectable value of
For example, if the concentratiabp is chosen for labora- (2)(2.326)(28.9)
tory QC, it should be detected (measured above the critical 7 _ (2.3262(.03902
level L¢c) almost all of the timg14]. Although Lc can be ] ) ]
given either in the units of the measurement technology or On€ important use of.p is to assess and monitor the
in units of concentrationLp is purely in units of concen- ~ Performance of a laboratory. If samples are spiked at a
tration. ConceptuallyL¢ is determined so that the desired Concentration of.p, then almost all of the time the result-
confidence level of the test that the true concentration is zeroiNd responses should exceed the critical valig Such
is met, andLp is determined so that the desired statistical trials can be run periodically to monitor the ability of the
power is obtained. It usually cannot be safely assumed thatlaboratory to detect analytes up to specifications. Another
the standard deviation at the detection limit is the same asiMmportant use is to determine what concentrations in the
the standard deviation of a blank, so reliable estimates of field can reliably be detected with a given technology. If
variance at any specified concentration are necessary for re€oncentrations below the minimum detectable value are im-
liable determination of the minimum detectable value. portant to detect, consideration should be given to the use of

We can find a good estimate d@fp by noting that the better technology or replicate measurements. The minimum
level is low enough that a normal approximation is appro- detectable value should never be used to assess a measured
priate (at high levels, the distribution is essentially log nor- value to decide if ItSho_uId be reported or censqred. It should
mal). We treaty as being normally distributed with mean only be used for planning purposes or for quality assurance.

o + B and with variance given bf4) and solve the result- S
ing equation. When the standard deviation is estimated, the4-3. Quantification limit
following is analogous, but we use the appropriate quantile

—135¢/ (15)

from the Student's distribution rather than that from the ~ BY @ quantification limit, some authors have meant the
normal. Recall that, frongs), lowest level at which the quantitative assessment is suffi-
ciently accurate for practical use. Since the standard devia-
Var{ii} = ,uZS,% + Se2 (9) tion at low levels is actually smaller than that at high levels,
the most precise measurements, in terms of standard devia-
so thatLp is the solution to the equation tion, are actually those for the lowest level of the analyte. A
definition with some practical utility is the true concentration
Lp = z0Se + z1yVar{Lp} (10) at which the relative standard deviation falls to a specified
level [6,15,16] However, measurement of some analytes at
Lp = z0Se + 21,/L2DS,§ + 52, (11) an arbitrarily low RSD, such as 10% may not be possible.

The model allows for evaluation of each case in terms of
wherezg is the percentile of the standard normal distribution what RSD is feasible. The RSD at 0 is automatically infi-
corresponding to the desired confidence level for the critical nite, no matter how accurate the measurement process is,
level, andz; the percentile corresponding to the desired and the RSD at high levels g, so it is meaningful to define
confidence level for the minimum detectable value. So long the quantification limit as the level at which the RSD falls
as the variance of does not increase too rapidly with a to a specified multiple of,, say 2,. It makes little sense
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to specify a particular arbitrary RSD, such as 20%, since we focus on comparing the model predicted variangat
the limit of quantification would then be undefined for any each concentration to the mean square deviatfofrom
measurement process with > 0.20. This is easily seen  the calibration curve. Hence we propose the following
by substituting in 0.2 in the example given earlier. If it is goodness-of-fit statistic for testing the appropriateness of the
desirable to make this computation for a particular process, modeled error structure for the data. Values:#f52 close

. . . l
this can easily be done using the model presented here. Let, 1 (or values of |°@i2/3i2 close to 0) indicate a good fit.

R be the desired RSD, e.g. 10%. Then the equation For the maximum likelihood estimation method, the pre-

VLg) dicted variance at a given concentration was estimated using
o R (16) the formula
o? = o2 + puP e e~ 1), (19)

whereV(Lg) = L2 52 + S2 has solution
> wherep; is the concentration.

Lo = Sé (17) Suppose, for example, that one wishes to calculate the ra-
R? — 5% tio o2/52 for the maximum likelihood method at a concen-

tration of u = 100.0. Suppose, furthermore, that we have

the resultsy = 11480, B = 11586,5, = 0.028424, and

6. = 10525745, and that there are= 5 replicates for

u = 1000 with the valuesyigg1 = 1286, y1002 = 1239,

Y1003 = 1273,y10Q4 = 1177,y10(15 = 1306. We calculate

the predicted value

wheneverR > §,. No real solution is possible wheh < §,,.
This is readily apparent on¢&6)is re-written as a quadratic
equation inLg.

For our zinc example$. = 28.9 ppt S, = 0.0390. If the
desired RSD is 10%, then

B 289 4
~ /(02— (0.03902

Compare this to the 99% confidence critical level of 67.2 ppt Of
and the minimum detectable value of 135 ppt. The limit of
quantification is somewhat arbitrary by comparison. While yi = 11480+ 11.586(1000)
the critical level and the minimum detectable value are quan- giving a predicted response of 1273.2. We then calcufate
tified using standard normal probability theory, the limit of sing the formula
guantification is set arbitrarily by the investigator. For exam- .
le, if th RSD is ch 15%, rather than 10% > _ 1 .
ple, if the target RSD is chosen to be 15%, rather than 10% .2 ;Z()’i,j —yi)z (20)
=1

Lo 14 ppt (18)

$i=a+Buwi

then the quantification limit is 200 ppt instead of 314ppt. °'
For analytes that are toxic at very low levels, this arbitrary
choice may have rather severe consequences. As |n thg casgnd Obtairﬁfoo — 14137. Calculatingafoo from (19), we
Icq>f the minimum detectable value, the limit of quantification obtaino2,, = 11966 ando?2,,/32,, = 0.84648, indicating

as no use in interpreting measurements that have already, fajrly good fit at this concentration.
occurred. The estimated concentration along with a measure  The goodness-of-fit statistic for an entire data set is
of the uncertainty of the measurement convey all of the nec- y
essary information. Tyt = In |:} Z <~7_,2] 21)

n “ S4
i=1 "t
5. Goodness-of-fit tests wheren is the number of concentrations. A value near zero
for Tyt indicates a good fit.

As the two-component model is relatively new, there are
no existing goodness-of-fit tests available for evaluating the 5.2. Good experimental design
conformity of the data to the model, or the efficacy of the
various algorithms used to fit the data to the model. Hence, When running standards to obtain a calibration curve, the
we need goodness-of-fit statistics to help determine if the best experimental design is to randomize the replicates, so
data indeed fit the model, and as a way of comparing differ- that the replicates at a given concentration are not all run

ent methods of estimation. sequentially. The reason for this is that when the replicates
at a given concentration are all run sequentially, values will
5.1. Error structure tend to be closer together than if the replicates are random-

ized among the other concentrations. This often results in a
Since estimates far and 8 are easily and reliably ob-  calibration curve that runs through the data in such a way
tained using standard weighted linear regression techniqueghat at some concentrations all the data are bunched above
and since the variance estimates are computationally in-the curve and at others all the data are bunched below the
tensive and crucial to important applications of the model, curve. A graph of the data and the calibration curve that
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shows this behavior indicates poor experimental design. An saved in a file. By plotting histograms of the 1000 parame-
extreme example of this phenomenon is showrigs. 4 ter estimates and the statistics, and ranking their values, we
and 5 If the replicates are correctly randomized, the mean can obtain an estimate of the distribution and its quantiles.
square deviation away from the mean will be very close to A 95% bootstrap confidence interval can be obtained by
the mean square deviation away from the calibration curve. sorting the vectors of parameter estimates. The 95% con-
Thus, to detect possible poor experimental design and dis-fidence interval is then the interval between the 25th and
tinguish it from true lack-of-fit in the inherent error structure 975th data points in the sorted data vector. If the estimation

of the analytical instrument, we propose the statistic routine is working well, and the data fit the model, all the
n 2 histograms of the 1000 parameter estimates will be centered
Sgf = = |:Z In {%H (22) at the true value and approximately bell-shaped about this
i—1 Sj value. For both the goodness-of-fit statistic and the experi-

oy ] ) ] mental design statistic, the value obtained from the real data
wheres? is the unbiased sample variance at a given concen-get ywill lie within the 95% bootstrap confidence interval if

tration ands? the mean square deviation away from the cal- the data fit the model and the experimental design is optimal.
ibration curve, as above. Values 8 close to zero indicate
good randomization.
It should be noted that data with a non-linear calibration 7 Results
curve will produce a high absolute value 8y if the data

are fit to a linear model. Basic visual diagnostics easily re-  Here we describe the application of the two-component
veal whether the lack-of-fit is caused by poor experimental model to two data sets. In one data set, EPA method 1638
design or a non-linearity in the data. If the true calibra- (metals by ICPMS) was used in separate analyses to evaluate
tion curve is non-linear, the data will lie along a quadratic gpjked samples from 0g/l to a high level (up to 85,000 g/l)
or exponential curve. If the lack-of-fit is due to poor ex- depending on the analyte. Twenty-three metals were ana-
perimental design, the data will approximately follow the |yzed, with 8-11 replicates per concentration of each metal.
linear calibration curve, but will bunch above and below it | the second data set, EPA method 5031 (volatile organ-
randomly across concentrations. If the data follow an expo- jcs by GC/MS) was used to analyze spiked samples for 15
nential curve, then an exponential calibration model, rather yo|atile organics, at nine spike levels from 0 to 3Qag,
than a linear one, should be fit. with 4-8 replicates per concentration level.
We give detailed results in this section for one analyte

from each data set. The other analytes yielded similar results,

6. Methods: the parametric bootstrap and the space required to provide detailed examples for each

o ~ analyte would be prohibitively large.
Because the exact distribution of any goodness-of-fit

statistic for this model would be difficult to derive, we use 7.1 Tyt
the parametric bootstrap to obtain an estimate of the null dis-
tribution. We can also use the bootstrap to obtain estimated A scatterplot of Tyt for all analytes is shown iffFig. 1

distributions of the parameter estimates, which are helpful Histograms of the bootstrapp@ for the example data sets
for assessing the efficacy of the estimation algorithm. show no or very small skewness for the MLE results (not
The parametric bootstraji7] is performed by first ob-  shown), suggesting little or no bias. A slight skewness was
taining the parameter estimates from the algorithms. Thesegpserved in the MLE results, but this is not unexpected, since
parameter estimates are used as parameter values to geneghjs statistic is not expected to be exactly normal. Values
ate data sets that we know fit the model. This procedure isfgr Tgt Which indicate lack-of-fit will vary depending on the
repeated a large number of times (about 1000) for each anaror structure of each analyte. The statistical significance of
lyte. These simulated data sets are then run through the estizgch of the values shown here would have to be generated
mation routines and parameter estimates for each parametepy the bootstrap, but it appears that the largest three values

for all 1000 data sets for each analyte are obtained.  are inconsistent with the null hypothesis while the others are
For example, the parameter estimates using the maximumegnsistent.

likelihood routine for the Ag data set (results not shown)

were:& = 21.4022,8 = 27.4918,6, = 43.4769, ands, = 7.2. S

0.0235. We generate measurement erkorsV(0, 83) and

n~N(0, 83). We can then generate an artificial data set that  \we calculated the experimental design statissig, by
follows the fitted model by setting = & + Bu € + € using MLE for each data set. A scatterplot 6 for all data

the same value gf as in the original data set. This procedure sets is shown irfFig. 2 As can be seen, poor experimental
is repeated 1000 times, generating 1000 data sets. These sinmdesign is a common problem, with many data sets showing
ulated data sets are then run through the estimation routinean estimated goodness-of-fit statistic well above zero. We
and the parameter estimates and goodness-of-fit statisticchose nickel as a striking example of this phenomenon.
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Scatterplot of Tgf for all Analytes
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It is important to point out that since the sum of the Table1

squared deviations away from the mean minimizes the sumBootstrap resuilts for proprionitrile parameters

of the squared deviations away from all possible poifig, Parameter True value 95% BS confidence
is expected to be positive. However, we are using the unbi- interval

ased estimate for the sample variance about the mean, i.e¢ 3.05 (1.69, 4.47)

we divide byn — 1, but are using the mean square error 8 0.891 (0.875, 0.909)
away from the calibration curve, i.e., we divide byHence, ZG 3.3208 %%71’72'35’)0811)

in data sets where the sum of squared deviations about theTZf —0.00863 66-557: 1_'32)
mean is quite close to the sum of squared deviations away sy 0.00674 (0.159, 0.346)
from the calibration curve, we get values 8§ that are Lc 6.81 (3.61, 9.86)
slightly negative. This occurs in the acetaldehyde, acetone,Lp 1371 (7.34, 19.9)

and acrylonitrile, acrolein, and proprionitrile data sets.

predicted responsd@able 1shows bootstrap results for the

parameter estimates for, g, o¢, o, the decision quantities

Lc and Lp and the goodness-of-fit statistics. Note that the
Here we show the results for proprionitrile and nickel and true value is well within the bootstrap confidence interval

the parametric bootstrap analyses. Proprionitrile is an exam-for all parameters and statistics. The two goodness-of-fit

ple of a data set that shows both excellent fit and excellent statistics show no lack-of-fit for this data set.

experimental design. The nickel data set shows extremely

poor experimental design and hence lack-of-fit as well. Also 7.3.2. Nickel

shown are bootstrap results for the detection decision quan- Fig. 4 shows the observed and predicted response for the

tities for proprionitrile. nickel data set. Note the erratic behavior of the observed

response around the calibration lirkéig. 5 highlights this

7.3.1. Proprionitrile erratic behavior at low concentrations, which are difficult
Proprionitrile is an example of a data set that shows both to observe for the full data set, due to scale. The phe-

excellent fit and excellent experimental design.Hig. 3, nomenon associated with poor experimental design is clear.

we see that the observed response scatters nicely around th&he Ty statistic lies well outside the upper bound of the 95%

7.3. Example data sets

Propionitrile Predicted Response

3000
°
2500 /;
2000
Q
%]
c
g 1500 ¢ data
g B mle predictions
1000
*
500
0 T T T T T T
0 500 1000 1500 2000 2500 3000 3500

concentration in pg/L

Fig. 3. Proprionitrile predicted response. Estimated calibration line for proprionitrile using maximum likelihood. Note the increasing aaragice
concentrations and the near constant variance near zero.
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Nickel Predicted and Observed Response

300000
250000 A~
*
200000
(]
g ¢ data
S 150000 -
o —#—mle predictions
*
100000
¢
.
50000
0 T T T T T
-5000 0 5000 10000 15000 20000 25000 30000

concentration in ppt

Fig. 4. Nickel predicted and observed response. Estimated calibration line for nickel using maximum likelihood. Note the variance struciting, indic
two components of variation and poor experimental design.

Nickel Response at Low Concentrations

5000

4500 ‘

4000

3500

3000 /./
*
2500 data

—=—mle predictions
2000
/i/
1500

/!/ A 4
1000

Pt
0

response

500

0 T T T T T

50 100 150 200 250 300
concentration in ppt

Fig. 5. Nickel response at low concentrations. This figure shows more clearly the erratic nature of scatter about the calibration line, indicating poo
experimental design.
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tic, Sqf, lies well above the bootstrap confidence interval, of Energy and the University of Georgia’s Savannah River
confirming that the lack-of-fit is probably due to poor exper- Ecology Laboratory.

imental design. Here again bathand g are well estimated
by the MLE routine. The MLE routine produces reasonable
estimates of the variance components in spite of poor eXper‘Appendix A. Closed form solution for IUPAC

imental design, se€able 2 minimum detectable value

7.4. Conclusion Given a critical levelL¢ with associated confidence level
§, and a desired confidence levéfor Lp, the IUPAC mini-

The two-component error model is useful for many ap- mum detectable value is the true concentrafignsuch that
plications in the assessment of environmental data since itihe measured response will excekd at least a fraction

provides accurate estimates of error across the entire US4 _ g of the time. The exact solution of this problem under

able range of a measurement technology, so long as theyne two-component model can be difficult, but a good ap-

The model has been tested on a wide variety of dataj pe the solution to the following equation:

sets, two of which were shown here. The estimation rou-
tine produces highly accurate maximum likelihood esti- (@ + BLp) — z1v/Var(y; Lp) = Lc = a + zgo« (A1)
mates for the model parameters for each of the data sets

tested. BLp — z1/Var(y; Lp) = zo0oe (A.2)
The two-component error model is especially useful
in the calculation of critical values and limits of detec- Lp — z1+/V(ii; Lp) = z0Se (A.3)

tion based on standard probability theory and also allows
calculation of limits of quantification. Thus, the model wherezg = z5 andz1 = zy, the appropriate quantiles of the
provides a solid analytical framework for making de- normal distribution:
tection decisions and a superior alternative to previous
methods for calculating the quantities mentioned above. Lp — 11\/L%S,§ + 82 = 708 (A.4)
That is, the model facilitates explicit evaluation of the
efficacy of alternative values for RSD as a criterion of has a solution fol.p exactly when
guantification. 1

The two-component model provides reasonable and re-§, < — (A.5)
liable method for obtaining parameters estimates for cali- u
brgtion curve data that hgvg desirable statils_tical properties-l-he solution is given by
using well-understood principles of probability. The MLE
algorithm produces excellent results as seen in simulations. 2 2en,2 2
Goodness-of-fit statistics which test for overall fit of the ;  _ Se [ZO Ty~ - ASpE Zl)]'
data and valid experimental design can be useful in identi- 1- z%Sg
fying data which do not fit the model or were not properly
randomized, respectively. Estimated distributions for the pa- If zo = z1 = z, the solution has the particularly simple form
rameter estimates, along with confidence intervals for use in 275
the goodness-of-fit tests can be constructed using the paraip = —
metric bootstrap. 1-255;

(A.6)

(A7)
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A.1. Proof

It is almost immediately apparent thap need not ex-
ist under the two-component model, or any model that al-
lows the error variance to increase with the concentration.
If z14/ V(1) exceedsgu for every value ofu, thenEg. (A.3)
certainly cannot be solved. This in turn will be true if

2 —1) > 1 (A.8)

252> 1 (A.9)
1

Sy > — (A.10)
71

Thus, it is necessary fdip to exist thatS, < 1/z1, and it
also turns out to be sufficient.

We can solve the defining equation fop in the following
way:

—21,/L3S2 + S? = 205 — Lp (A.11)
3L3S2 + 2252 = (208 — Lp)? (A.12)
22L3S2 + 2882 = 2387 — 220ScLp + L} (A.13)
or

L3(1—z38%) — Lp(2z08) + (23— 282 =0.  (A.14)

It is not difficult to show that this quadratic equation will
have real solutions whenevgk.5) holds. The discriminant
of (A.14)is

D = 42352 — 41 — 2282)(:3 — 232 (A.15)

D = 452[z3 — (1 - 2252)(z3 — D). (A.16)

This can only be negative if the second term within square
brackets is negative (since the first term is positive). By
hypothesis, 1—z§S§ > 0, so that the only way this term can
be negative is when3 > z2. However, 0< 1 — 7352 < 1,

so under these conditions,

ZS - (1- Z%Ss)(zé — z%) > z% - (ZS - Z%) = z% >0
(A.17)

Hence, the discriminant is always positive when condition
(A.5) is satisfied.

The appropriate solution to this quadratic equation satis-
fies

(22080) + 25¢,/23 — (1— 35D — 22)

L —
° 2(1— 252)

(A.18)

Se [0+ \J4— 1= 5523 — D]

Lp
12382

(A.19)

207

and this solution is positive exactly under our hypothesis. If
zo0 = z1, the solution has the particularly simple form

2z0

Lp=Se——_
P22

(A.20)
Intuitively, the limit of detection would bé¢(zo + z1) if the
variance were constant, and the factor in the denominator
inflates the result to account for the increasing variance.

Let us consider an example. Suppose that 0 andg =
1, so that the concentration and the response are on the same
scale, and suppose that the measurement process parameters
arec. = Sc = 1 ando,, = 0.1. Then

S, =/ € (& — 1) = 0.10075

which is essentially the same ag. When the confidence
level for both the critical value and the detection limit are
chosen to be 95%, that iy = z1 = 1.645, application of
the formulas leads td.c = 1.645 andLp = 3.383 (only
slightly greater than if the variance did not increase with
the concentration). If a confidence level of 99% for both is
desired thenzg = z1 = 2.326 andLc = 2.326 andLp =
4.923.

On the other hand, it;, = 0.3, thenLc = 2.326 as
before, butLp now increases to 10.518. Finally, whep =
0.385, we cannot find a solution féip sinces,, = 0.4305>
1/2.326 = 0.4299. When the variance increases this rapidly
with the concentration, no concentration can guarantee at the
99% confidence level that the measured value will exceed
Lc.

(A.21)
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