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Abstract

The utility of analytical chemistry measurements in most applications is dependent on an assessment of measurement error. This paper
demonstrates the use of a two-component error model in setting limits of detection and related concepts and introduces two goodness-of-fit
statistics for assessing the appropriateness of the model for the data at hand. The model is applicable to analytical methods in which high concen-
trations are measured with approximately constant relative standard deviation. At low levels, the relative standard deviation cannot stay constant,
since this implies vanishingly small absolute standard deviation. The two-component model has approximately constant standard deviation near
zero concentration, and approximately constant relative standard deviation at high concentrations, a pattern that is frequently observed in prac-
tice. Here we discuss several important applications of the model to environmental monitoring and also introduce two goodness-of-fit statistics,
to ascertain whether the data exhibit the error structure assumed by the model, as well as to look for problems with experimental design.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Chemical analytical error; Limits of detection; Two-component error model; Goodness-of-fit

1. Introduction

Limitations of the analytical methodology used to mea-
sure the concentration of toxic substances in the environ-
ment have had an important policy role in regulation. It is
difficult to regulate emissions of toxic substances at levels
below what can be reliably measured, and a definition of
the level of reliable measurement is therefore crucial to pol-
icy making. In this paper, we discuss the implications of a
model for measurement error for these policy issues.

It has been observed from long experience that the mea-
surement error of an analytical method, for example atomic
absorption spectroscopy, is of two types. Over a range of
concentrations near zero, the measurement error is seen to
be constant. Over ranges of higher concentration, the mea-
surement error is observed to be proportional to the con-
centration of the analyte[1,2]. This poses some difficulty in
estimating the overall precision of an analytical method for
data that span the “gray area” where a transition occurs be-
tween near zero concentrations and quantifiable amounts. If

∗ Corresponding author.

a model assuming a constant error is used, there is an implicit
assumption that the absolute size of the error is unrelated
to the concentration of the analyte. This assumption is not
supported by empirical observation of behavior at the higher
levels. If a model assuming a proportional error is used, then
there is an implicit assumption that the measurement error
becomes vanishingly small as the concentration approaches
zero. This assumption is also contrary to experience of be-
havior at the lower levels. Since environmental monitoring
data often fall into this gray area, understanding measure-
ment error in this region is of considerable importance.

The model presented here was first proposed by Rocke
and Lorenzato[3], where some of the technical background
to this model can be found. The model resolves the difficul-
ties discussed above by incorporating both types of error that
are observed in practice into a single model. This model pro-
vides an obvious advantage over existing models by describ-
ing the precision of measurements across the entire usable
range. We will present two examples in detail—one of Ni
by ICP/MS and one of proprionitrile by GC/MS—numerical
illustrations using Zn and Ag by ICP/MS, and summary re-
sults for a larger group of organics by GC/MS and met-
als by ICP/MS. These examples support the validity and
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advantages of this two-component model. We also discuss
the application of the model to detection limits, quantifica-
tion limits, sample size calculations, and the construction
of confidence intervals. We introduce two goodness-of-fit
statistics and estimate their distributions using the paramet-
ric bootstrap. Some related work with a different point of
view on some of the policy issues can be found in[4–6].

It should perhaps be noted here that this model deals with
variation in the calibration curve produced by the analytical
instrument only. It does not deal with other sources of vari-
ation, such as the inter-laboratory variation, human-error,
or error in identification of peak area in gas chromatogra-
phy/mass spectroscopy. Identifying a signal as a peak is a
non-trivial task and the inherent variation produced by this
difficulty is beyond the scope of this paper. For further read-
ings in this area, see[7].

2. The model

Most measurement technologies require a calibration
curve, often linear, to estimate the actual concentration of an
analyte in a sample for a given response. We can incorporate
into the linear calibration model the two types of errors that
are observed in most analyses. The two-component model is

y = α + βµ eη + ε (1)

wherey is the response (such as peak area) at concentration
µ, α andβ are the parameters of the calibration curve,η ∼
N(0, ση) and ε ∼ N(0, σε). Here,η represents the propor-
tional error that always exists, but dominates at concentra-
tions significantly above zero, andε represents the additive
error that always exists but dominates mainly for near zero
concentrations. This two-component model approximates a
constant standard deviation for very low concentrations and
approximates a constant relative standard deviation (RSD)
for higher concentrations. Note thaty is the response of the
measuring apparatus, for example peak area. In order to ob-
tain the estimated concentration, we perform the back cal-
culation

µ̂ = y − α̂

β̂
(2)

whereα̂ andβ̂ are estimates ofα andβ, respectively, in the
model(1).

Under this model, the variance of the responsey at con-
centrationµ whenα andβ are known is given by

Var{y} = µ2β2 eσ2
η (eσ2

η − 1) + σ2
ε (3)

This calculation relies on the assumption thatα andβ are
known, which is perhaps an unusual circumstance. It is safe
to consider these parameters known when the estimates are
based on large amounts of available historical data where
there is little variation in the observed calibration line over
time. When the regression and variance parameters are un-

known, these quantities can be estimated by simply substi-
tuting the estimates from the algorithms. This step is justi-
fied in application, since, as the bootstrap results show, the
variance of the parameter estimates for maximum likelihood
estimation (MLE) is quite small[3].

Two derived quantities will be useful in interpretation of
the results.Sε = σε/β represents the standard deviation of

µ̂ at low levels.1 Sη =
√

eσ2
η (eσ2

η − 1) is the RSD ofµ̂
for high levels. For values ofση appropriate for analytical
technologies (say not more than 0.3),Sη is very nearση. For
example, ifση = 0.1, thenSη = 0.1008 and ifση = 0.3,
thenSη = 0.32.

Using these derived quantities, we can represent the vari-
ance ofy as

Var{y} = µ2β2S2
η + σ2

ε (4)

and for the estimated concentration,

Var{µ̂} = µ2S2
η + S2

ε (5)

The usefulness of the two-component error model is clear
when compared to using only the relative standard deviation,
which is defined to be equal to the standard deviation of the
estimated concentration divided by the concentration[8].
For the two-component model, we have

RSD{µ̂} =
√

S2
η + S2

ε

µ2
(6)

If the error structure is described only in terms of RSD,
we see that measurements at high concentrations have a
nearly constant RSD, whereas small concentrations have an
increasing RSD that tends to infinity as the concentration
approaches zero, which is not observed in practice. Use of
RSD alone to characterize measurement error in the low
concentration region can cause difficulties when attempting
to make decisions regarding detection and quantification.
The two-component model allows for a more reasonable
estimation of error near zero, and hence more reasonable
criteria for setting detection limits and critical levels.

Likewise, using the simple model, i.e. assuming that the
standard error remains constant across all concentrations,
results in grossly inaccurate estimates of error at higher con-
centrations. For example, assume that the standard deviation
of blanks is 29 g/l, but thatση = 0.3, a very high coeffi-
cient of variation that nevertheless often occurs with some
technologies, and thatβ = 1. Suppose we have an esti-
mated concentration of 600 g/l and would like to calculate
confidence intervals around that estimate. Using the simple
model, we would estimate the standard deviation to be that
of the blanks, or 29 g/l. However, sinceση = 0.3, the true

standard deviation is
√

292 + 6002S2
η = 182 g/l, an increase

of the variance of over six times the variance at zero. Poor

1 Here we assume thatα and β are well enough estimated that they
can be treated as known.
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estimation of error at a given concentration will heavily af-
fect the estimation of limits of detection, and hence regula-
tory practices.

3. Estimation

The parameters in the two-component model can be es-
timated in a number of ways. The standard deviationσε of
the low level measurements can be estimated from repli-
cate blanks, for example by those routinely included with
batches of samples. If this number is stable, it can also be
estimated from routine QC data so long as measurements at
zero concentration are replicated. The parameterση can be
likewise estimated from the standard deviation of the loga-
rithm of high level measurements. The calibration curve can
then be estimated using weighted least squares, weighting
each point by the inverse estimated variance (using(4) with
estimates of the parameters inserted). It is also possible to
estimate all four parameters simultaneously using weighted
least squares, although our experience is that this estima-
tion method is often not very stable and can lead to non-
convergence or impossible estimates (such as negative
variances).

The most effective estimation method is maximum like-
lihood estimation, as described in[3]. A computer program
that solves for the maximum likelihood estimates forα, β, σε,
ση is available athttp://www.cipic.ucdavis.edu/∼dmrocke.

Two example data sets and the results from the maximum
likelihood algorithm will be shown here, as well as summary
results for several other data sets.

4. Limits of detection

In this section we describe some applications of the
two-component model. Special emphasis is given to detec-
tion and measurement of toxins at very low levels.

4.1. Critical levels

Detection refers to the capability of an analytical mea-
surement process to indicate the presence of an analyte. This
requires an agreed upon procedure for determining whether
or not a given measurement result conclusively establishes
that the analyte is present in the sample[9]. In practice, this
means that the investigators establish a numerical value such
that a result greater than this value is extremely unlikely to
occur if the true concentration is in fact zero, while a result
lower than this value indicates that the true concentration in
the sample is either zero, or is too low to detect (with cer-
tainty) with the technology in use. The measurement error
that exists in any technology leads to this inability to de-
tect concentrations below a certain level. The critical level
is defined by the International Union of Pure and Applied
Chemistry (IUPAC) to be the value,LC, such that the prob-

ability of a measurement exceeding this value will be very
small, say 0.01, when the true concentration in the sample
is zero[10]. That is, samples that do not contain the analyte
are very unlikely to generate measurement results that ex-
ceedLC. Note that the critical level is defined at first in the
units of the measurement technology (e.g., peak area) not in
units of concentration. Of course, we can also express the
critical level in units of concentration by taking the criti-
cal level (in measured units) and dividing by the calibration
slopeβ. Since the critical level is the point at which the de-
tection decision is made, it has been called by some authors
a detection limit, but it should be noted that it is distinct
from the IUPAC definition of the limit of detection. Limits
of detection will be discussed later in this paper.

Under the assumption of normality, the value ofLC may
be calculated as follows: assume thatσε, the standard devia-
tion of the response atµ = 0, is known and that we require
99% confidence in our statement that the analyte is present.
Then the one-sided 99% confidence level is represented by
LC = α + z0σε, wherez0 is the z-value corresponding to
the 99th percentile of the standard normal distribution (i.e.,
z0 = 2.326). To find the critical level for any level of con-
fidence, simply find the appropriate one-sidedz-value, then
multiply by the standard deviation of the blanks and add this
to the mean value of the blanks, i.e.,

LC = α + z0σε (7)

in units of the response of

LC = z0Sε (8)

in units of concentration. Generally, the mean and standard
deviation of the blanks will be well enough known from
experience to use this method. If these are estimated from
data, then at-value (from thet-distribution), with the ap-
propriate degrees of freedom, is substituted for thez-value.
The advantage of the two-component error model is that
an estimate forσε with desirable statistical properties can
be obtained from data that span a range of concentrations,
resulting in greater accuracy from a given amount of data.
Specifically, the two-component model accounts for the in-
herent error structure of the entire data set. Once we have
achieved adequate goodness-of-fit by considering the error
structure as a whole, the parameter estimates provide us with
more accurate estimates of error at the concentrations we are
interested in, here, concentrations near the limit of detection.

For our example zinc data, we haveσε = 204 in units of
peak area andSε = 28.9 g/l. If we use a 99% confidence
level, the normal percentage point is 2.326, so thatLC in
units of peak area is 490+ (2.326)(204) = 965 and in units
of concentration is(2.326)(28.9) = 67.2 g/l.

Note that a measured value belowLC does not establish
that the analyte is absent, only that it has not been shown
conclusively to be present. This means that the value should
be reported as measured, together with the standard devia-
tion at the measurement value. Cases in which limitations
of the instrument itself prevent reporting a value (e.g. as

http://www.cipic.ucdavis.edu/dmrocke
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is the case with some spectroscopic measurements) are an
obvious exception. In other cases, censoring of values be-
low LC may be required as a matter of policy by regulatory
agencies. Such practices result in data sets with reduced util-
ity from the loss of information, which makes tracking of
trends, monitoring of laboratory quality, summarization of
data, and other data analysis all more difficult. More impor-
tantly, this censoring needlessly prevents investigators from
being able to reach probabilistically quantified conclusions
about the true presence of an analyte. Sometimes more or
less sophisticated methods can be used to cope with these
censored data[11–13], but simple reporting of measured
values would allow use of basic, easily understood method-
ology instead of these complex techniques.

4.2. Minimum detectable value

The limit of detection or minimum detectable value is the
true concentration,LD, of an analyte that will, with high con-
fidence, produce a measured value above the critical level.
For example, if the concentrationLD is chosen for labora-
tory QC, it should be detected (measured above the critical
level LC) almost all of the time[14]. AlthoughLC can be
given either in the units of the measurement technology or
in units of concentration,LD is purely in units of concen-
tration. Conceptually,LC is determined so that the desired
confidence level of the test that the true concentration is zero
is met, andLD is determined so that the desired statistical
power is obtained. It usually cannot be safely assumed that
the standard deviation at the detection limit is the same as
the standard deviation of a blank, so reliable estimates of
variance at any specified concentration are necessary for re-
liable determination of the minimum detectable value.

We can find a good estimate ofLD by noting that the
level is low enough that a normal approximation is appro-
priate (at high levels, the distribution is essentially log nor-
mal). We treaty as being normally distributed with mean
α + βµ and with variance given by(4) and solve the result-
ing equation. When the standard deviation is estimated, the
following is analogous, but we use the appropriate quantile
from the Student’st distribution rather than that from the
normal. Recall that, from(5),

Var{µ̂} = µ2S2
η + S2

ε (9)

so thatLD is the solution to the equation

LD = z0Sε + z1
√

Var{LD} (10)

LD = z0Sε + z1

√
L2

DS2
η + S2

ε , (11)

wherez0 is the percentile of the standard normal distribution
corresponding to the desired confidence level for the critical
level, andz1 the percentile corresponding to the desired
confidence level for the minimum detectable value. So long
as the variance ofy does not increase too rapidly withµ, a

closed form solution is possible. The required condition is

Sη <
1

z1
. (12)

For details and proof, seeAppendix A. Note that if this
condition is not satisfied, then there is no solution at all. The
closed form solution derived then is

LD =
Sε

[
z0 +

√
z2

0 − (1 − z2
1S

2
η)(z2

0 − z2
1)

]
1 − z2

1S
2
η

(13)

Whenz0 = z1 = z, we have the particularly simple form

LD = 2zSε

1 − z2S2
η

(14)

Then an estimatedLD is found by simply substituting the
sample variance estimates into the above equation.

For our example zinc data, we haveSε = 28.9 andSη =
0.0390. If we usez0 = z1 = 2.326, corresponding to 99%
confidence, we have a minimum detectable value of

(2)(2.326)(28.9)

1 − (2.326)2(.0390)2
= 135 g/l (15)

One important use ofLD is to assess and monitor the
performance of a laboratory. If samples are spiked at a
concentration ofLD, then almost all of the time the result-
ing responses should exceed the critical valueLC. Such
trials can be run periodically to monitor the ability of the
laboratory to detect analytes up to specifications. Another
important use is to determine what concentrations in the
field can reliably be detected with a given technology. If
concentrations below the minimum detectable value are im-
portant to detect, consideration should be given to the use of
better technology or replicate measurements. The minimum
detectable value should never be used to assess a measured
value to decide if it should be reported or censored. It should
only be used for planning purposes or for quality assurance.

4.3. Quantification limit

By a quantification limit, some authors have meant the
lowest level at which the quantitative assessment is suffi-
ciently accurate for practical use. Since the standard devia-
tion at low levels is actually smaller than that at high levels,
the most precise measurements, in terms of standard devia-
tion, are actually those for the lowest level of the analyte. A
definition with some practical utility is the true concentration
at which the relative standard deviation falls to a specified
level [6,15,16]. However, measurement of some analytes at
an arbitrarily low RSD, such as 10% may not be possible.
The model allows for evaluation of each case in terms of
what RSD is feasible. The RSD at 0 is automatically infi-
nite, no matter how accurate the measurement process is,
and the RSD at high levels isση so it is meaningful to define
the quantification limit as the level at which the RSD falls
to a specified multiple ofση, say 2ση. It makes little sense
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to specify a particular arbitrary RSD, such as 20%, since
the limit of quantification would then be undefined for any
measurement process withση > 0.20. This is easily seen
by substituting in 0.2 in the example given earlier. If it is
desirable to make this computation for a particular process,
this can easily be done using the model presented here. Let
R be the desired RSD, e.g. 10%. Then the equation√

V(LQ)

LQ

= R (16)

whereV(LQ) = L2
QS2

η + S2
ε has solution

LQ =
√

S2
ε

R2 − S2
η

(17)

wheneverR > Sη. No real solution is possible whenR ≤ Sη.
This is readily apparent once(16) is re-written as a quadratic
equation inLQ.

For our zinc example,Sε = 28.9 pptSη = 0.0390. If the
desired RSD is 10%, then

LQ = 28.9√
(0.1)2 − (0.0390)2

= 314 ppt (18)

Compare this to the 99% confidence critical level of 67.2 ppt
and the minimum detectable value of 135 ppt. The limit of
quantification is somewhat arbitrary by comparison. While
the critical level and the minimum detectable value are quan-
tified using standard normal probability theory, the limit of
quantification is set arbitrarily by the investigator. For exam-
ple, if the target RSD is chosen to be 15%, rather than 10%
then the quantification limit is 200 ppt instead of 314 ppt.
For analytes that are toxic at very low levels, this arbitrary
choice may have rather severe consequences. As in the case
of the minimum detectable value, the limit of quantification
has no use in interpreting measurements that have already
occurred. The estimated concentration along with a measure
of the uncertainty of the measurement convey all of the nec-
essary information.

5. Goodness-of-fit tests

As the two-component model is relatively new, there are
no existing goodness-of-fit tests available for evaluating the
conformity of the data to the model, or the efficacy of the
various algorithms used to fit the data to the model. Hence,
we need goodness-of-fit statistics to help determine if the
data indeed fit the model, and as a way of comparing differ-
ent methods of estimation.

5.1. Error structure

Since estimates forα and β are easily and reliably ob-
tained using standard weighted linear regression techniques
and since the variance estimates are computationally in-
tensive and crucial to important applications of the model,

we focus on comparing the model predicted varianceσ2
i at

each concentration to the mean square deviations̃2
i from

the calibration curve. Hence we propose the following
goodness-of-fit statistic for testing the appropriateness of the
modeled error structure for the data. Values ofσ2

i /s̃2
i close

to 1 (or values of logσ2
i /s̃2

i close to 0) indicate a good fit.
For the maximum likelihood estimation method, the pre-

dicted variance at a given concentration was estimated using
the formula

σ2
i = σ2

ε + β2µ2
i eσ2

η (eσ2
η − 1), (19)

whereµi is the concentration.
Suppose, for example, that one wishes to calculate the ra-

tio σ2
i /s̃2

i for the maximum likelihood method at a concen-
tration of µ = 100.0. Suppose, furthermore, that we have
the resultsα̂ = 114.80, β̂ = 11.586, σ̂η = 0.028424, and
σ̂ε = 10.525745, and that there arer = 5 replicates for
µ = 100.0 with the valuesy100,1 = 1286,y100,2 = 1239,
y100,3 = 1273,y100,4 = 1177,y100,5 = 1306. We calculate
the predicted value

ŷi = α̂ + β̂µi

or

ŷi = 114.80+ 11.586(100.0)

giving a predicted response of 1273.2. We then calculates̃2
i

using the formula

s̃2
i = 1

r

r∑
j=1

(yi,j − ŷi)
2 (20)

and obtains̃2
100 = 1413.7. Calculatingσ2

100 from (19), we
obtainσ2

100 = 1196.6 andσ2
100/s̃

2
100 = 0.84648, indicating

a fairly good fit at this concentration.
The goodness-of-fit statistic for an entire data set is

Tgf = ln

[
1

n

n∑
i=1

σ2
i

s̃2
i

]
(21)

wheren is the number of concentrations. A value near zero
for Tgf indicates a good fit.

5.2. Good experimental design

When running standards to obtain a calibration curve, the
best experimental design is to randomize the replicates, so
that the replicates at a given concentration are not all run
sequentially. The reason for this is that when the replicates
at a given concentration are all run sequentially, values will
tend to be closer together than if the replicates are random-
ized among the other concentrations. This often results in a
calibration curve that runs through the data in such a way
that at some concentrations all the data are bunched above
the curve and at others all the data are bunched below the
curve. A graph of the data and the calibration curve that
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shows this behavior indicates poor experimental design. An
extreme example of this phenomenon is shown inFigs. 4
and 5. If the replicates are correctly randomized, the mean
square deviation away from the mean will be very close to
the mean square deviation away from the calibration curve.
Thus, to detect possible poor experimental design and dis-
tinguish it from true lack-of-fit in the inherent error structure
of the analytical instrument, we propose the statistic

Sgf = 1

n

[
n∑

i=1

ln

{
ŝ2
i

s̃2
i

}]
(22)

whereŝ2
i is the unbiased sample variance at a given concen-

tration and̃s2
i the mean square deviation away from the cal-

ibration curve, as above. Values ofSgf close to zero indicate
good randomization.

It should be noted that data with a non-linear calibration
curve will produce a high absolute value forSgf if the data
are fit to a linear model. Basic visual diagnostics easily re-
veal whether the lack-of-fit is caused by poor experimental
design or a non-linearity in the data. If the true calibra-
tion curve is non-linear, the data will lie along a quadratic
or exponential curve. If the lack-of-fit is due to poor ex-
perimental design, the data will approximately follow the
linear calibration curve, but will bunch above and below it
randomly across concentrations. If the data follow an expo-
nential curve, then an exponential calibration model, rather
than a linear one, should be fit.

6. Methods: the parametric bootstrap

Because the exact distribution of any goodness-of-fit
statistic for this model would be difficult to derive, we use
the parametric bootstrap to obtain an estimate of the null dis-
tribution. We can also use the bootstrap to obtain estimated
distributions of the parameter estimates, which are helpful
for assessing the efficacy of the estimation algorithm.

The parametric bootstrap[17] is performed by first ob-
taining the parameter estimates from the algorithms. These
parameter estimates are used as parameter values to gener-
ate data sets that we know fit the model. This procedure is
repeated a large number of times (about 1000) for each ana-
lyte. These simulated data sets are then run through the esti-
mation routines and parameter estimates for each parameter
for all 1000 data sets for each analyte are obtained.

For example, the parameter estimates using the maximum
likelihood routine for the Ag data set (results not shown)
were:α̂ = 21.4022,β̂ = 27.4918,σ̂ε = 43.4769, andσ̂η =
0.0235. We generate measurement errorsε∼N(0, σ̂2

ε ) and
η∼N(0, σ̂2

η). We can then generate an artificial data set that

follows the fitted model by settingy = α̂ + β̂µ eη + ε using
the same value ofµ as in the original data set. This procedure
is repeated 1000 times, generating 1000 data sets. These sim-
ulated data sets are then run through the estimation routine
and the parameter estimates and goodness-of-fit statistics

saved in a file. By plotting histograms of the 1000 parame-
ter estimates and the statistics, and ranking their values, we
can obtain an estimate of the distribution and its quantiles.

A 95% bootstrap confidence interval can be obtained by
sorting the vectors of parameter estimates. The 95% con-
fidence interval is then the interval between the 25th and
975th data points in the sorted data vector. If the estimation
routine is working well, and the data fit the model, all the
histograms of the 1000 parameter estimates will be centered
at the true value and approximately bell-shaped about this
value. For both the goodness-of-fit statistic and the experi-
mental design statistic, the value obtained from the real data
set will lie within the 95% bootstrap confidence interval if
the data fit the model and the experimental design is optimal.

7. Results

Here we describe the application of the two-component
model to two data sets. In one data set, EPA method 1638
(metals by ICPMS) was used in separate analyses to evaluate
spiked samples from 0 g/l to a high level (up to 85,000 g/l)
depending on the analyte. Twenty-three metals were ana-
lyzed, with 8–11 replicates per concentration of each metal.
In the second data set, EPA method 5031 (volatile organ-
ics by GC/MS) was used to analyze spiked samples for 15
volatile organics, at nine spike levels from 0 to 3000�g/l,
with 4–8 replicates per concentration level.

We give detailed results in this section for one analyte
from each data set. The other analytes yielded similar results,
and the space required to provide detailed examples for each
analyte would be prohibitively large.

7.1. Tgf

A scatterplot ofTgf for all analytes is shown inFig. 1.
Histograms of the bootstrappedTgf for the example data sets
show no or very small skewness for the MLE results (not
shown), suggesting little or no bias. A slight skewness was
observed in the MLE results, but this is not unexpected, since
this statistic is not expected to be exactly normal. Values
for Tgf which indicate lack-of-fit will vary depending on the
error structure of each analyte. The statistical significance of
each of the values shown here would have to be generated
by the bootstrap, but it appears that the largest three values
are inconsistent with the null hypothesis while the others are
consistent.

7.2. Sgf

We calculated the experimental design statistic,Sgf by
MLE for each data set. A scatterplot ofSgf for all data
sets is shown inFig. 2. As can be seen, poor experimental
design is a common problem, with many data sets showing
an estimated goodness-of-fit statistic well above zero. We
chose nickel as a striking example of this phenomenon.
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 Scatterplot of Tgf for all Analytes
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Fig. 1. Scatterplot ofTgf for all analytes. Values ofTgf near zero show goodness-of-fit.

Scatterplot of Sgf for all analytes
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Fig. 2. Scatterplot ofSgf for all analytes. Values ofSgf near zero show goodness-of-fit.
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It is important to point out that since the sum of the
squared deviations away from the mean minimizes the sum
of the squared deviations away from all possible points,Sgf
is expected to be positive. However, we are using the unbi-
ased estimate for the sample variance about the mean, i.e.,
we divide byn − 1, but are using the mean square error
away from the calibration curve, i.e., we divide byn. Hence,
in data sets where the sum of squared deviations about the
mean is quite close to the sum of squared deviations away
from the calibration curve, we get values forSgf that are
slightly negative. This occurs in the acetaldehyde, acetone,
and acrylonitrile, acrolein, and proprionitrile data sets.

7.3. Example data sets

Here we show the results for proprionitrile and nickel and
the parametric bootstrap analyses. Proprionitrile is an exam-
ple of a data set that shows both excellent fit and excellent
experimental design. The nickel data set shows extremely
poor experimental design and hence lack-of-fit as well. Also
shown are bootstrap results for the detection decision quan-
tities for proprionitrile.

7.3.1. Proprionitrile
Proprionitrile is an example of a data set that shows both

excellent fit and excellent experimental design. InFig. 3,
we see that the observed response scatters nicely around the

Propionitrile Predicted Response
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Fig. 3. Proprionitrile predicted response. Estimated calibration line for proprionitrile using maximum likelihood. Note the increasing varianceat high
concentrations and the near constant variance near zero.

Table 1
Bootstrap results for proprionitrile parameters

Parameter True value 95% BS confidence
interval

α 3.05 (1.69, 4.47)
β 0.891 (0.875, 0.909)
σε 3.68 (1.97, 5.35)
ση 0.0508 (0.0175, 0.0811)
Tgf −0.00863 (−0.557, 1.32)
Sgf 0.00674 (−0.159, 0.346)
LC 6.81 (3.61, 9.86)
LD 13.71 (7.34, 19.9)

predicted response.Table 1shows bootstrap results for the
parameter estimates forα, β, σε, ση the decision quantities
LC andLD and the goodness-of-fit statistics. Note that the
true value is well within the bootstrap confidence interval
for all parameters and statistics. The two goodness-of-fit
statistics show no lack-of-fit for this data set.

7.3.2. Nickel
Fig. 4 shows the observed and predicted response for the

nickel data set. Note the erratic behavior of the observed
response around the calibration line.Fig. 5 highlights this
erratic behavior at low concentrations, which are difficult
to observe for the full data set, due to scale. The phe-
nomenon associated with poor experimental design is clear.
TheTgf statistic lies well outside the upper bound of the 95%
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Nickel Predicted and Observed Response
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Fig. 4. Nickel predicted and observed response. Estimated calibration line for nickel using maximum likelihood. Note the variance structure, indicating
two components of variation and poor experimental design.
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Fig. 5. Nickel response at low concentrations. This figure shows more clearly the erratic nature of scatter about the calibration line, indicating poor
experimental design.
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Table 2
Bootstrap results for nickel parameters

Parameter True value 95% BS confidence
interval

α 670 (653, 689)
β 10.3 (10.2, 11.1)
σε 43.3 (23.1, 61.1)
ση 0.226 (0.133, 0.314)
Tgf 1.19 (−0.600, 0.844)
Sgf 1.96 (−0.0835, 0.118)

bootstrap confidence interval, showing that poor experimen-
tal design can result in lack-of-fit; seeTable 2. This particular
experimental design results in underestimation of the vari-
ance at each concentration. The experimental design statis-
tic, Sgf , lies well above the bootstrap confidence interval,
confirming that the lack-of-fit is probably due to poor exper-
imental design. Here again bothα andβ are well estimated
by the MLE routine. The MLE routine produces reasonable
estimates of the variance components in spite of poor exper-
imental design, seeTable 2.

7.4. Conclusion

The two-component error model is useful for many ap-
plications in the assessment of environmental data since it
provides accurate estimates of error across the entire us-
able range of a measurement technology, so long as the
data exhibit the error structure specified by the model.
The model has been tested on a wide variety of data
sets, two of which were shown here. The estimation rou-
tine produces highly accurate maximum likelihood esti-
mates for the model parameters for each of the data sets
tested.

The two-component error model is especially useful
in the calculation of critical values and limits of detec-
tion based on standard probability theory and also allows
calculation of limits of quantification. Thus, the model
provides a solid analytical framework for making de-
tection decisions and a superior alternative to previous
methods for calculating the quantities mentioned above.
That is, the model facilitates explicit evaluation of the
efficacy of alternative values for RSD as a criterion of
quantification.

The two-component model provides reasonable and re-
liable method for obtaining parameters estimates for cali-
bration curve data that have desirable statistical properties
using well-understood principles of probability. The MLE
algorithm produces excellent results as seen in simulations.
Goodness-of-fit statistics which test for overall fit of the
data and valid experimental design can be useful in identi-
fying data which do not fit the model or were not properly
randomized, respectively. Estimated distributions for the pa-
rameter estimates, along with confidence intervals for use in
the goodness-of-fit tests can be constructed using the para-
metric bootstrap.
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Appendix A. Closed form solution for IUPAC
minimum detectable value

Given a critical levelLC with associated confidence level
δ, and a desired confidence levelδ′ for LD, the IUPAC mini-
mum detectable value is the true concentrationLD such that
the measured response will exceedLC at least a fraction
1− δ′ of the time. The exact solution of this problem under
the two-component model can be difficult, but a good ap-
proximation can be derived using normal theory by letting
LD be the solution to the following equation:

(α + βLD) − z1
√

Var(y; LD) = LC = α + z0σε (A.1)

βLD − z1
√

Var(y; LD) = z0σε (A.2)

LD − z1

√
V(µ̂; LD) = z0Sε (A.3)

wherez0 = zδ andz1 = zδ′ , the appropriate quantiles of the
normal distribution:

LD − z1

√
L2

DS2
η + S2

ε = z0Sε (A.4)

has a solution forLD exactly when

Sη <
1

z1
(A.5)

The solution is given by

LD =
Sε

[
z0 +

√
z2

0 − (1 − z2
1S

2
η)(z2

0 − z2
1)

]
1 − z2

1S
2
η

. (A.6)

If z0 = z1 = z, the solution has the particularly simple form

LD = 2zSε

1 − z2S2
η

. (A.7)
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A.1. Proof

It is almost immediately apparent thatLD need not ex-
ist under the two-component model, or any model that al-
lows the error variance to increase with the concentration.
If z1

√
V(µ) exceedsµ for every value ofµ, thenEq. (A.3)

certainly cannot be solved. This in turn will be true if

z2
1 eσ2

η (eσ2
η − 1) > 1 (A.8)

z2
1S

2
η > 1 (A.9)

Sη >
1

z1
(A.10)

Thus, it is necessary forLD to exist thatSη < 1/z1, and it
also turns out to be sufficient.

We can solve the defining equation forLD in the following
way:

−z1

√
L2

DS2
η + S2

ε = z0Sε − LD (A.11)

z2
1L

2
DS2

η + z2
1S

2
ε = (z0Sε − LD)2 (A.12)

z2
1L

2
DS2

η + z2
1S

2
ε = z2

0S
2
ε − 2z0SεLD + L2

D (A.13)

or

L2
D(1 − z2

1S
2
η) − LD(2z0Sε) + (z2

0 − z2
1)S

2
ε = 0. (A.14)

It is not difficult to show that this quadratic equation will
have real solutions whenever(A.5) holds. The discriminant
of (A.14) is

D = 4z2
0S

2
ε − 4(1 − z2

1S
2
η)(z2

0 − z2
1)S

2
ε (A.15)

D = 4S2
ε [z2

0 − (1 − z2
1S

2
η)(z2

0 − z2
1)]. (A.16)

This can only be negative if the second term within square
brackets is negative (since the first term is positive). By
hypothesis, 1−z2

1S
2
η > 0, so that the only way this term can

be negative is whenz2
0 > z2

1. However, 0< 1 − z2
1S

2
η < 1,

so under these conditions,

z2
0 − (1 − z2

1S
2
η)(z2

0 − z2
1) > z2

0 − (z2
0 − z2

1) = z2
1 > 0

(A.17)

Hence, the discriminant is always positive when condition
(A.5) is satisfied.

The appropriate solution to this quadratic equation satis-
fies

LD =
(2z0Sε) + 2Sε

√
z2

0 − (1 − z2
1S

2
η)(z2

0 − z2
1)

2(1 − z2
1S

2
η)

(A.18)

LD =
Sε

[
z0 +

√
z2

0 − (1 − z2
1S

2
η)(z2

0 − z2
1)

]
1 − z2

1S
2
η

(A.19)

and this solution is positive exactly under our hypothesis. If
z0 = z1, the solution has the particularly simple form

LD = Sε

2z0

1 − z2
1S

2
η

(A.20)

Intuitively, the limit of detection would beSε(z0 + z1) if the
variance were constant, and the factor in the denominator
inflates the result to account for the increasing variance.

Let us consider an example. Suppose thatα = 0 andβ =
1, so that the concentration and the response are on the same
scale, and suppose that the measurement process parameters
areσε = Sε = 1 andση = 0.1. Then

Sη =
√

eσ2
η (eσ2

η − 1) = 0.10075, (A.21)

which is essentially the same asση. When the confidence
level for both the critical value and the detection limit are
chosen to be 95%, that isz0 = z1 = 1.645, application of
the formulas leads toLC = 1.645 andLD = 3.383 (only
slightly greater than if the variance did not increase with
the concentration). If a confidence level of 99% for both is
desired then,z0 = z1 = 2.326 andLC = 2.326 andLD =
4.923.

On the other hand, ifση = 0.3, thenLC = 2.326 as
before, butLD now increases to 10.518. Finally, whenση =
0.385, we cannot find a solution forLD sinceSη = 0.4305>

1/2.326= 0.4299. When the variance increases this rapidly
with the concentration, no concentration can guarantee at the
99% confidence level that the measured value will exceed
LC.
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